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The hydrophobic effect is the major factor that drives a protein toward collapse and folding. As a conse-
quence of the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the
protein. We analyze the solvent-accessible surface area of 1825 nonhomolog protein chains deposited in the
Brookhaven Protein Data Bank. This solvent-accessible surface area presents an intrinsic self-similarity be-
havior. The comparison between the accessible surface area as function of the number of amino acids and the
accessible surface area as function of gyration radius supplies a measure of the scaling exponent close to the
one observed by volume as function of radius of gyration or by mass-size exponent. The present finding
indicates that the fractal analysis describes the protein compactness as an object packing between random
spheres in percolation threshold and crumpled wires.
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The fractal behavior assists for the explanation of several
structural and dynamics aspects of biological molecules.
Thus, self-similarity was uncovered in, e.g., clusters dimen-
sion of proteins �1�, anomalous temperature dependence of
the Raman spin-lattice relaxation rates �2,3�, relation be-
tween the fractal dimension and number of hydrogen bridges
�4�, multifractality in the energy hypersurface of the proteins
and a possible alternative explanation of the Levinthal para-
dox �5�, packing of small protein fragments �6�, loss of the
accessible surface area of amino acids and hydrophobicity
scale �7�, and degree of compactness of the proteins �8,9�,
among others. Furthermore, the fractal methods corroborate
to identify different states of the same system according to its
different scaling behaviors; e.g., the fractal dimension is dif-
ferent for structures with �without� hydrogen bonds �4,5� or
different long-range correlations in a liquid-vapor-phase
transition of the solvent �10�. Then, the correct interpretation
of the scaling results obtained by the fractal analysis is cru-
cial for understanding the intrinsic geometry of the systems
under study �11�. In this point of view the mass-size relation
is one of the most important measures, because if self-
similarity appears, we have scale invariance like

mass � RD, �1�

where D is a fractionary exponent interpreted as the fractal
mass dimension of the system.

Protein folding is driven by hydrophobic forces, apolar
amino acids associate to form a hydrophobic core, packing
the protein in the folded state. Thus, during folding, hydro-
phobic groups are expelled spontaneously from water,
thereby engendering a sequestered, solvent-shielded core. In
this sense, there are a myriad number of ways in which the
internal residues can pack together efficiently. Packing in
proteins was first studied by using a Voronoi analysis for
proteins in a space-filling model �12�, where each atom is

taken to be a sphere with a fixed radius given by the van der
Waals one. Several empirical rules of the protein folding can
be deduced from information obtained from studies of pro-
tein in vitro �13�. To study protein folding is necessary taking
into account that a molecular system has a great number of
minima in the energy hypersurface �molecular conforma-
tions� �5,13–23�, which increases with the number of the
degrees of freedom in the molecular system.

Packing in proteins is an intriguing and a current research
field. The high packing density of residues in proteins ought
to be manifested in some order and the packing order has not
been thoroughly characterized. Thus, the packing regularity
in proteins determines the internal organization of proteins.
Hence, protein packing can have a dominant effect on func-
tional dynamics and it can aid in the design, simulation, and
evaluation of structures. Many aspects of protein structures
relate to internal packing considerations including design,
simulation, and evaluation of structures, as well as sequence
conservation and even folding nucleation. Usually, in the lit-
erature there has been a strong focus on the conformations of
protein backbones. However, because of competition be-
tween local and long-range interactions, it is not clear where
the greatest regularity should appear. The literature about
protein compactness has a lot of proposed models to explain
the packing density. Richards �12� proposed that the packing
inside proteins is compared to the packing of spheres in crys-
talline solids. Finney �24� proposed that proteins behave as
liquid random spheres and Honig �25� stressed on the struc-
tural plasticity of proteins. Based on observations of high
packing densities and low compressibility, protein cores are
often considered to be more like solids than liquids. Jigsaw
puzzle �a perfect packing�, random spheres, among other ap-
proaches, are proposed models to explain the protein packing
�25�. In contrast, proteins are tolerant to mutations suggest-
ing that proteins can be regarded as plastic or liquidlike �25�.
From the mass-size analysis �26�, we observed that the pack-
ing density of these folded structures behaves like spheres in
their percolation threshold �8,9,27�. Thus, when we analyze
the different members of a protein family, we observe that
deletions and/or insertions do not change the protein folding;*mamoret@gmail.com
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these mutations maintain practically the same folded struc-
ture. On the other hand, when we change an alanine to a
proline in � helices, this mutation must be the ruin of the
�-helix structure. Recently, protein compactness has been
studied by the most varied approaches as, for instance, by a
method based on Delaunay tesselation �27�, a coarse-grained
scale �28�, mass-size exponent �8,9�, and self-organized criti-
cality �29–31�, among other approaches. We notice that Ref.
�28� proposed that residue clusters from PDB structures,
each comprised of a central residue and all neighbors located
within the first coordination shell, have been rigidly reori-
ented and superimposed in a self-consistent optimization.
About 2/3 of residues are found to follow approximately the
relative orientation preferences of face-centered-cubic �fcc�
packing, when examined on a coarse-grained scale �one site
per residue�, while the remaining 1/3 occupy random posi-
tions. The observed regularity, which becomes more pro-
nounced after optimal superimposition of core residues, ap-
pears to be the result of uniform sampling of the
coordination space around each residue on a coarse-grained
scale with hydrophobic clustering and volume exclusion to
achieve packing densities close to that of the universal clos-
est packing of identical spheres. The remaining 1/3 refer to
residues that are more loosely or randomly packed being
exposed in the solvent-accessible surface area �28�. How-
ever, the solvent-accessible surface area of proteins is a vari-
able of great importance and it is not well known, what turns
it a defined thermodynamic variable in an imprecise way
�32�. Thus, this study can aid in the understanding of the
relation between the area and the volume of proteins, which
is not yet defined.

In this paper we analyze the solvent-accessible surface
area of 1825 nonhomolog protein chains deposited in the
Brookhaven Protein Data Bank �PDB�. Thus, we measure the
solvent-accessible surface area of a protein molecule by roll-
ing a probe sphere �with a size close to water molecule� over
a molecule �33�. The surface of a macromolecule can be
defined to be the part of the molecule that is accessible to
solvent. The probe sphere is represented by a sphere of ra-
dius 1.4 Å, i.e., close to the solvent molecule �water� radius.
Figure 1 depicts the self-similarity of the solvent-accessible
surface area as function of number of amino acids. We ob-
serve that the solvent-accessible surface area �A� obeys a
power law when the number of amino acids �N� increases in
the protein chains �scale invariance�, i.e.,

A � N� �2�

with exponent �=0.87. We emphasize that the correlation
coefficient of Pearson is R=0.992, which is very close to 1,
if we take into account that we analyzed 1825 protein chains.
This fractal behavior is similar to one obtained by the radius
of gyration Rg as function of the number of amino acids N
�34�,

Rg � N�. �3�

As a result of a fractal analysis, Fig. 2 shows the self-
similar behavior of the solvent-accessible surface area as

function of the radius of gyration of protein chains Rg. Again
we observe that the solvent-accessible surface area obeys a
power law when the Rg increases, i.e.,

A � Rg
� �4�

with �=2.26 �fractal area dimension�. From the fractal be-
havior we note that this surface area has reentrances because
the fractal dimension is greater than 2 carrying it as a crum-
pling object �35,36�.

These Eqs. �2�–�4� or volume� radius of gyration �27�
can be used to compare the relations of the surface area
showed in Figs. 1 and 2 with the fractal behavior of the
protein volume. Then, after some simple steps we have

1/� =
�

�
= 2.60. �5�

The value of the exponent �1 /�� can be compared with the
relation between the average radius �Ri

j� and the mass Mi
j of

the jth protein chain belonging to the ith protein as proposed
by �8,9�. In this case Mi

j � �Ri
j�� with �=2.47. The difference

FIG. 1. The solvent-accessible surface area A as function of
number of amino acids N. The continuous line represents the best
fit, with �=0.87; standard deviation is 0.04 and standard error is
0.003.

FIG. 2. The solvent-accessible solvent area A as function of
radius of gyration Rg. The continuous line represents the best fit,
with �=2.26; standard deviation is 0.09, standard error is 0.007,
and correlation coefficient R=0.949.
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between the volume or mass-size dimension � and �−1 arises
from a simple mean-field model �35,36�. In this model the
total energy E associated with the folded structure of a pro-
tein is divided in the most coarse-grained way possible in
two contributions:

�1� A term coming from an elastic energy, Eel=
1
2kRn,

where k	0 is an effective elastic constant, R characterizes
the radius of gyration of the protein configuration, and n is a
scaling exponent. We notice that n=2 recovers the usual
parabolic elastic energy.

�2� The second term is a self-avoidance energy Esa, which
is assumed to be a two-body interaction and consequently is
proportional to the square of the average density of mass.
This self-avoidance energy term thus reads after integration
in the volume, Esa�
2�V�M2�R−3 �
� M

V and V�R3�.
The protein mass M scales obviously with the number of
amino acids �M �N�. The self-avoidance energy term corre-
sponds in turn to an outward nonlinear force:

Fsa = −
�Esa

�R
�

M2

R4 . �6�

In this model elastic term is associated with entropic and
segregation forces, as well as with hydrophobic interactions.
Hydrophobic force drives a protein toward collapse and fold-
ing; then this force tends to privilege a collapsed configura-
tion of the protein, while the self-avoidance term, which has
its microscopic origin in Pauli’s exclusion principle, tends to
privilege extended configurations of the protein. In our
model, Fsa simulates the steric repulsion forces, which is one
of the dominant forces in protein folding �14,15�.

By minimizing the total energy E=Eel+Esa with respect
to R, i.e., � �E

�R =0�, we obtain the mass-size dependence at the
equilibrium as the power law �M �RD�, with D= �3+n� /2.
The case of mass-size exponent uses n=2 which corresponds
to a linear elastic �Hooke� force, while all other cases are
associated with nonlinear forces. Thus a continuous spectrum
of fractal dimension, say in the experimental interval, will be
allowed for n varying in the satisfying 0�n�3.

From our analysis we observe that the two protein fractal
dimensions, one obtained by mass as function of radius ��
=2.47� and the other obtained by number of amino acids as
function of radius �1 /�=2.60�, are completely correlated.
The main difference between these two exponents is the
elastic-force contribution to the inside of proteins n	2 and
to the solvent-accessible surface area n	2.2. Then, here we

show that the folded structures of proteins behave on average
as spheres in percolation threshold inside the protein and as
irreversibly crushed wires in the solvent-accessible surface
area. Furthermore, a protein not necessarily behaves as a
traditional liquid or a solid crystalline object.

In summary, we observe that proteins have two different
self-similar behaviors, the self-similarity obtained by the
mass-size exponent �8�, by the volume as function of radius
�27� and by the solvent-accessible surface area as a function
of the number of amino acids. In relation to the solvent-
accessible surface area we obtain two different behaviors,
i.e., the solvent-accessible surface area as a function of the
number of amino acids �Fig. 1� and the fractal dimension of
the solvent-accessible surface area �Fig. 2�. These power
laws supply us a measure of the roughness of the solvent-
accessible surface area and corroborate the explanation about
the fractal behavior of the protein volume. Therefore, the
scaling exponent �=2.47 can be viewed as amino acids fill-
ing out a protein in the same way as random spheres in
percolation threshold �9,37–39�. In this sense, solvent-
accessible surface area is hydrophilic region that is in contact
with physiologic solvent medium �40�. Comparing the fractal
behavior of the volume with the accessible surface area we
note that accessible surface area has a larger roughness char-
acterized by the power law ��=2.26� and the protein volume
presents voids ��=2.47�.

Therefore, amino acids over the solvent-accessible sur-
face area behave on average as irreversibly crushed wires.
From the elastic scaling exponent we observe that the
solvent-accessible surface area restoring force is greater than
the core restoring one. Then, proteins present an elegant and
simple behavior. Thus, the inside protein packing behaves
like random spheres in the percolation threshold �8,9�. On
the other hand, the solvent-accessible surface area packing
behavior is equivalent to the irreversibly crushed wires.

Finally, we recall that in general proteins are globular
structures. These macromolecules can be composed for one
protein chain or more chains. In this paper we analyzed pro-
teins with one monomer and protein chains of the other cases
�dimer, trimer, etc.� only. Nevertheless, this result can be
generalized to proteins independently of number of mono-
mers.
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